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Vectors

Definition 1 Vector addition If u and v are positioned so the initial point of v is at the
terminal point of u, then the sum u+v is the vector from the initial point of u to the terminal
point of v.

u+ v

v

u

Definition 2 Scalar multiplication If c is a scalar and v is a vector, then the scalar
multiple cv is the vector whose lenght is |c| times the length of v and whose direction is the
same as v if c > 0 and is opposite id c < 0. If c = 0 or v = 0, then cv = 0

If we place the initial point of a vector a at the origin of a rectangular coordinate system,
then the terminal point of a has coordinates of the form (a1, a2) or (a1, a2, a3), depending on
whether our coordinate system is two or three dimensional. These coordinates are called the
components of a and we write

a = 〈a1, a2〉 a = 〈a1, a2, a3〉

Definition 3 Given the points A(x1, y1, z1) and B(x2, y2, y2), the vector a with representation
~AB is

a = 〈x2 − x1, y2 − y1, z2 − z1〉

The magnitude or length of the vector v is the length of any of its representations and is
denoted by the symbol |v| or ‖v‖.

Definition 4 The length of the two dimensional vector a = 〈a1, a2〉

|a| =
√
a21 + a22

The length of the three dimensional vector a = 〈a1, a2, a3〉 is

|a| =
√
a21 + a22 + a23

Definition 5 Unit vector Unit vector is a vector whose length is 1 if the vector a 6= 0

u =
1

|a|
a =

a

|a|
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Definition 6 Te standard basis vectors in V3

i = 〈1, 0, 0〉 j = 〈0, 1, 0〉 k = 〈0, 0, 1〉

Definition 7 Dot Product If a = 〈a1, a2, a3〉 and b = 〈b1, b2, b3〉, then the dot product of a
and b is the number a · b given by

a · b = a1b1 + a2b2 + a3b3

Note: the dot product is also called the scalar product or inner product

Properties of the Dot Product if a, b, c are vectors in V3 and d is a scalar, then

1. a · a = |a|2

2. a · (b+ c) = a · b+ a · c

3. 0 · a = 0

4. a · b = b · a

5. (ca) · b = c(a · b) = a · (cb)

Theorem 1 If θ is the angle between the vectors a and b, then

a · b = |a| · |b| cos δ

Corollary 1

cos θ =
a · b
|a||b|

Two nonzero vectors a and b are called perperdicular or orthogonal if the angle between
them is θ = π/2

Definition 8 Orthogonal Two vectors a and b are orthogonal if and only if a · b = 0

Definition 9 Direction angles The direction angles of nonzero vector a are the angles, in
the interval [0,π], that a makes with the positive x, y, z axes.

Definition 10 Direction cosine The cosine of the direction angles are called the direction
cosines of the vector a

Note: The direction cosines of a are the components of the unit vector in direction of a

1

|a|
a = 〈cosα, cosβ, cos γ〉

Definition 11 Scalar projection
Scalar projection of b onto a (or the component of b along a):

compab =
a · b
|a|
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Note: |b| cos θ =compab

Definition 12 Vector projection
Vector projection of b onto a:

projab =

(
a · b
|a|

)
a

|a|
=
a · b
|a|2

a

Definition 13 Distance from a point to a line Let P1(x1, y1) and ax+ by+ c = 0 be the
line. Then, the distance between them is given by

d =
|ax1 + by1 + c|√

a2 + b2

Definition 14 Cauchy-Schwartz Inequality Let a and b be two vectors, then

|a · b| ≤ |a||b|

Definition 15 Triangle inequality Let a and b be two vectors. Then

|a+ b| ≤ |a|+ |b|

Definition 16 Parallelogram identity Let a and b be two vectors, then

|a+ b|2 + |a− b|2 = 2|a|2 + 2|b|2

Definition 17 Cross Product If a = 〈a1, a2, a3〉 and b = 〈b1, b2, b3〉, then the cross product
of a and b is the vector

a× b = 〈a2b3 − a3b2, a3b1 − a1b3, a1b2 − a2b1〉

An easy way to remember is to use determinants, by rewrite the definition using second order
determinants and the standard basis vectors i, j, k:

a× b =

∣∣∣∣ a2 a3
b2 b3

∣∣∣∣ i− ∣∣∣∣ a1 a3
b1 b3

∣∣∣∣ j +

∣∣∣∣ a1 a2
b1 b2

∣∣∣∣ k
=

∣∣∣∣∣∣
i j k
a1 a2 a3
b1 b2 b3

∣∣∣∣∣∣
Theorem 2 The vector a× b is orthogonal to both a and b

Theorem 3 If θ is the angle between a and b, then the length of the cross product a × b is
given by

|a× b| = |a||b| sin θ

Corollary 2 Two non zero vectors a and b are parallel if and only if

a× b = 0

Note: the length pf the cross product a×b is equal to the area of the parallelogram determined
by a and b

Theorem 4 The volume of the parallelepiped determined by the vectors a, b, c is the magni-
tude of their scalar triple product:

V = |a · (b× c)| =

∣∣∣∣∣∣
∣∣∣∣∣∣
a1 a2 a3
b1 b2 b3
c1 c2 c3

∣∣∣∣∣∣
∣∣∣∣∣∣
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Equations of Lines and Planes

Definition 18 Line A line L in three dimensional space is determined when we know a point
P0(x0, y0, z0) on L and a direction for L, which is conveniently described by a vector v parallel
to the line.

Definition 19 Vector equation of a line Let r0 = 〈x0, y0, z0〉 and r = 〈x, y, z〉 be the
position vctors of two points P0, P in a line L. Then, if vector a with representation ~PoP
gives

r = r0 + a

Since a and v are parallel vectors, there exists a scalar t s.t a = tv

r = r0 + tv

Definition 20 Parametric equations The parametric equations for a line through a point
(x0, y0, z0) and parallel to the direction vector v = 〈a, b, c〉 are

x = x0 + at y = y0 + bt z = z0 + ct

Definition 21 Line segment If r0 and r1 are two different vectors on a line L, then we
can take v = r1 − r0 and the vector equation of L becomes

r(t) = (1− t)r0 + tr1 0 ≤ t ≤ 1

This is called the line segment from r0 to r1.

Planes

Definition 22 A plane in space is determined by a point P0(x0, y0, z0) in the plane and a
vector n (normla vector) that is orthogonal to the plane.

Definition 23 Scalar equation of the plane A scalar equation of the plane through point
P0(x0, y0, z0) with normal vector n = 〈a, b, c〉 is

a(x− x0) + b(y − y0) + c(z − z0) = 0

Definition 24 The distance between a point and a plane The distance between a point
P1(x1, y1, z1) to the plane ax+ by + cz + d = 0 is

D =
|ax1 + by1 + cz1 + d|√

a2 + b2 + c2

Cylinders and Quadric Surfaces

In order to sketch the graph of a surface, it is useful to determine the curves of intersection
of the surface with planes parallel to the coordinate planes. These curves are called traces
of the surface.

Definition 25 Cylinder A cylinder is a surface that consist of all lines (called rulings)
that are parallel to a given line pass through a given plane curve
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Definition 26 Quadric surface A quadric surface is the graph of a second degree equation
in three variables x, y and z. The most general equation is

Ax2 +By2 + Cz2 +Dxy + Eyz + Fxz +Gx+Hy + Iz + J = 0

Where A,B,C, ..., J are constants, but by traslation and rotation it can be brought into one
of the two stardard forms

Ax2 +By2 + Cz2 + J = 0 or Ax2 +By2 + Iz = 0

Note: Quadric surfaces are the counterparts in three dimensions of the conic sections in the
plane.

Vectors Functions

In general, a function is a rule that assigns to each element in the domain an element in the
range. A Vector-valued function, or vector function, is simply a function whose domain
is set of real numbers and whose range is a set of vecotrs.

It means that for every number t, the independent variable, in the domain of r there is
a unique vector in V3 (if we are in three dimension) denoted by r(t). If f(t), g(t), h(t) are the
components of the vectors r(t), then f, g, h are real valued functions called the component
functions of r and we write

r(t) = 〈f(t), g(t), h(t)〉 = f(t)i+ g(t)j + h(t)k

Definition 27 L ∈ Rn is called limit of r : I ∈ R→ Rn at a ∈ R if

∀ε > 0 ∃δ > 0 s.t. 0 < |t− a| < δ ⇒ ‖r(t)− L‖ < ε

Notation:
lim
t→a

f(t) = L

Lemma 1 let r(t) = 〈f(t), g(t), h(t)〉, then

lim
t→a

r(t) =
〈

lim
t→a

f(t), lim
t→a

g(t), lim
t→a

h(t)
〉

Provided the limits of the component functions exist

Definition 28 Continuity r : I → Rn is continuous at a ∈ I if

lim
t→a

r(t) = r(a)

Lemma 2 r is continuous at t = a if the components functions are continuous at a

Definition 29 Space Curves Let I ⊂ R interval, r : I → R3 continuous. Then C : r(I) is
called space curve.

r is called parametrization of C
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Definition 30 r : I → Rn, I ⊂ R interval, is called differentiable at t ∈ I if the limit

r′(t) =
dr

dt
(t) = lim

h→0

r(t+ h)− r(t)
h

exists. Thus r′(t) is called derivative of r at t

Remark: derivative of r : I → Rn at t ∈ I is the tangent vector of the curve C ′ = r(I) at
the point r(t)

And if r′(t) 6= 0 we can define the unit tangent vector

T (t) =
r′(t)

‖r′(t)‖
Moreover, note that r(t + h) − r(t)/h gives the average velocity over time interval of length
h and its limit is the velocity vector v(t) at time t.

The velocity is also the tangent vector and points in the direction of the tangent line. The
speed of the particle at time t is the magnitude of the velocity vector ‖v(t)‖ = ‖r′(t)‖. The
acceleration, instead, is the derivative of the velocity.

Theorem 5 r : I → Rn, r 〈f, g, h, ...〉 is differentiable iff each components are differentiable

Definition 31 r : I → R3 is integrable ⇔ f, g, h are integrable and for a, b ∈ I∫ b

a
r(t)dt =

(∫ b

a
f(t)dt

)
i+

(∫ b

a
g(t)dt

)
j +

(∫ b

a
h(t)dt

)
k

Note: It is used to determinate a curve as class Cn if such curve is differentiable and his
n-th derivative is continuous.

Arc Length

Let I = [a, b], r : I → R3 continuous and differentiable, i.e r′(t) exists and continuous.

Definition 32 The length of C ′ = r(I) with C ′ − parametrization. r : [a, b]→ R3 is define
with

L =

∫ b

a
‖r′(t)‖dt

Definition 33 let r : [a, b]→ Rn, such that r′ is continuous

s(t) =

∫ t

a
‖r′(u)‖du t(s)

In other words, s(t) is the length of the part of C between r(a) and r(t).

Note: it is often useful parametrize a curve with respect to arch length because the arch
length does not depend of the coordinate system or a particular parametrization. Then, the
parametrization by arch length is given by

r(s) = r(t(s))

Well with the reparameterization we can now tell where we are on the curve after we’ve
traveled a distance of s along the curve. Note as well that we will start the measurement of
distance from where we are at t = a
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Curvature

Definition 34 A curve C is smooth if it has a C ′ parametrization r : I → Rn with r′(t) 6= 0
for all t ∈ I

Definition 35 The curvature if a smooth curve C with a C2 parametrization r : I → Rn is

K =

∥∥∥∥dTds
∥∥∥∥

where T is the unit tangent vector

Note: By the chain rule the curvature is given by

K =
‖T ′(t)‖
‖r′(t)‖

Moving frame and torsion

Let C be a smooth curve with C3 paramets. r : I → R3

Goal: define in some natural way three mutually orthogonal vectors of length 1 at each point
on C

The first vector: the unit tangent vector T

T (s) =
dr

ds
=

r′(t)

‖r′(t)‖

The second vector: The principal unit normal vector (or simply unit normal) N(t):

N(t) =
T ′(t)

‖T ′(t)‖

Note: dT
ds = KN . Moreover, T (t) and N(t) define a plane, called the osculating plane (from

latin osculum which means kiss). The circle of curvature, or the osculating circle, of a curve
C at point P is the circle in the osculating plane that passes through P with radius 1/K and
center a distance 1/K from P along the vector N . We can think about it as the circle that
best describes how C behaves near P

The third vector: The binormal vector B(t)

B(t) = T (t)×N(t)

Then (T,N,B) is a right handed system of orthogonal unit vectors (frame)

Definition 36 Torsion The torsion(τ) measure how spatial (non-planer) a curve is

dB

ds
= −τN

τ = −dB
ds
·N
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Definition 37 Frenet-Serret Formulas

1.
dT

ds
= KN

2.
dN

ds
= −KT + τB

3.
dB

ds
= −τN

In matrix notation: T ′N ′
B′

 =

 0 K 0
−K 0 τ

0 −τ 0

TN
B


Remark: r : I ⊂ R→ Rn is differentiable at t ∈ I

⇔ ∃v ∈ Rn such that lim
h→0

r(t+ h)− r(t)
h

= v

⇔ ∃v ∈ Rn such that lim
τ→t

r(τ)− r(t)
τ − t

= v

⇔ ∃v ∈ Rn such that lim
τ→t

‖r(τ)− (r(t) + v(τ − t))‖
|τ − t|

= 0

Note: t→ r(t) + v(τ − t) is the linear approximation of r at r(t)

Partial derivatives

Functions of two variables

Definition 38 Function of two variables A function f of two variables is a rule that
assigns to each ordered pair of real numbers (x, y) in a set D a unique real number denoted
by f(x, y). The set D is the domain of f and its range is the set of values that f takes on,
that is, {f(x, y)|(x, y) ∈ D}

Note: we often write z = f(x, y), where x, y are the independent variables and z the depen-
dent one. Moreover, this kind of function have as domain a subset of R2 and whose range is
a subset of R.

Definition 39 Graph if f is a function of two variables with domain D, then the graph of
f is the set of all points (x, y, z) in R3 such that z = f(x, y) and (x, y) is in D

Definition 40 The level curves of a function f of two variables are the curves with equa-
tion f(x, y) = k, where k is a constant (in the range of f).

A collection of level curves is called contour map
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Limits and Continuity

Definition 41 Limit Let f be a function of two variables whose domain D includes points
arbitrary close to (a, b). Then we say that the limit of f(x, y) as (x, y) approaches (a, b)
is L and we write

lim
(x,y)→(a,b)

f(x, y) = L

If for every number ε > 0 there is a corresponding number δ > 0 such that

if (x, y) ∈ D and 0 <
√

(x− a)2 + (y − b)2 < δ and |f(x, y)− L| < ε

Here follow the step for show that a limit does not exists:

1. if f(x, y)→ L1 as (x, y)→ (a, b) along a path C1

2. if f(x, y)→ L2 as (x, y)→ (a, b) along a path C2

3. if L1 6= L2 then lim(x,y)→(a,b) f(x, y) does not exists

Definition 42 Continuity A function f is continuous at (a, b) if

lim
(x,y)→(a,b)

f(x, y) = f(a, b)

We say that f is continuous on D if f is continuous at every point (a, b) in D

Definition 43 Limit of function with two or three variables if f is defined on D ⊂ Rn,
then limx→a f(x) = L means that for every number ε > 0 there is a corresponding number
δ > 0 such that

if x ∈ D and 0 < |x− a| < δ then |f(x)− L| < ε

Partial derivatives

Definition 44 Parial derivatives If f is a function of two variables, its partial deriva-
tives are the function fx and fy defined by

fx(x, y) = lim
h→0

f(x+ h, y)− f(x, y)

h

fy(x, y) = lim
h→0

f(x, y + h)− f(x, y)

h

Notation:

fx(x, y) = fx =
∂f

∂x
=

∂

∂x
f(x, y) =

∂z

∂x
= f1

fy(x, y) = fy =
∂f

∂y
=

∂

∂y
f(x, y) =

∂z

∂y
= f2

Theorem 6 Higher derivatives f : D ∈ Rn → R is called Ck if all partial derivatives at
to order k exists and are continuous.

Theorem 7 Clairaut’s theorem Suppose f is defined on a disk D that contains the point
(a, b). If the functions fxy and fyx are both continuous on D, then

fxy(a, b) = fyx(a, b)

Note: it means that the order of the partial derivative of class C2 it does not matter.
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Tangent planes

Definition 45 Tagent plane Suppose f : D ∈ R2 → R and is it of class C2, then an
equation of the plane to the surface z = f(x, y) at the point P (x0, y0, z0) is

z − z0 = fx(x0, y0)(x− x0) + fy(x0, y0)(y − y0)

Linear approximation

Definition 46 Linearization and linear approximation The linear function whose graph
is the tanget plane, namely

L(x, y) = f(a, b) + fx(a, b)(x− a) + fy(a, b)(y − b)

is called linearization of f at (a, b) and the approximation

L(x, y) ≈ f(a, b) + fx(a, b)(x− a) + fy(a, b)(y − b)

is called the linear approximation or the tangent plane approximation of f at (a, b)

Theorem 8 f is called differentiable at a if the partial derivatives ∂f
∂xi

(a) exists for all
i = 1, ..., n and for

L(x) = f(a) + fxi(a)(xi + ai) + · · ·+ fxn(a)(xn + an)

if the following limits exists

lim
x→a

f(x)− L(x)

‖x− a‖
= 0

Definition 47 Gradient The derivative of f at a is given by (fxi(a), ..., fxn(a)) and is de-
noted as gradient of f at a: ∇f(a)

Theorem 9 f : D ⊂ Rn → R has continuous partial derivatives at a ∈ D. Then f is
differentiable at a

Remark:

• a function is differentiable if it can be well approximated by its linearization

• the graph of the linearization L is the tangent plane.

• the derivative of f at a is a linear map Rn → R, ∆x→ ∇f(a)∆x

Theorem 10 f : D ⊂ Rn → R differentiable at a ∈ D. Then f is continuous at a

Remark: the existence of partial derivatives is a rather weak property. It does not imply
differentiability nor even continuity
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The Chain Rule

Recall that the Chain Rule for functions for a single variable gives the rule for differating a
composite function: if y = f(x) and x = g(t), where f and g are differentiable functions, then
y is indirectly a differentiable function of t and

dy

dt
=
dy

dx

dx

dt

For functions of more than one variable, the Chain Rule has several versions, each of them
giving a rule for differentiating a composite function.

Theorem 11 Chain Rule case 1 Suppose that z = f(x, y) is a differentiable function of
x and y, where x = g(t) and y = h(t) are both differentiable functions of t. Then z is a
differetiable function of t and

dz

dt
=
∂f

∂x

dx

dt
+
∂f

∂y

dy

dt

Theorem 12 Chain Rule general r(t) = (x1(t), ..., xn(t)) where t ∈ I and f : D ⊂ Rn →
R, thus r(I) ⊂ D. Then

d

dt
(f ◦ r)(t) =

d

dt
f(x1(t), ..., xn(t))

=
∂f

∂x1
(r(t))

dx1
dt

+ · · ·+ ∂f

∂xn
(r(t))

dxn
dt

= ∇f(r(t))r′(t)

Even more generally:

Theorem 13 Let g : Rm → Rn, where t = (t1, ..., tm) 7→ g(t) = (x1(t), ..., xn(t)) and let
f : Rn → R, then z = (f ◦ g). Moreover, suppose that z is a differentiable function of n
variables and each variables are differentiable function of the m variables. Then,

∂z

∂ti
=

∂f

∂x1

∂x1
∂ti

+ · · ·+ ∂f

∂xn

∂xn
∂ti

where i = 1, ...,m

Implicit Differentiation

Assume that f(x, y) = 0 can be locally be showed for y, i.e. y = y(x) s.t f(x, y(x)) = 0 f.a
x ∈ I. Now let define f(x(t), t(t) with x(t) = t) and r(t) = (x(t), y(t)). Then (f ◦ r)(t) = 0
f.a. t. If f is differentiable, we can apply the Chain Rule, we obtain:

∂f

∂x

dx

dt
+
∂f

∂y

dy

dx
= 0

But dx/dt = 1, so if fy 6= 0 we can solve for y′ and obtain:

y′ = −fx
fy
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Now, for generalize it suppose we have f(x, y, z) = 0 that can be locally solved for z, i.e.
z = (x, y). Then, f(x, y, z(x, y)) = 0 f.a (x, y). Then by apply the chain rule we obtain:

∂f

∂x

∂x

∂x
+
∂f

∂y

∂y

∂x
+
∂f

∂z

∂z

∂x
= 0

But ∂/∂x(x) = 1 and ∂/∂y(y) = 0, so the equation becomes

∂f

∂x
+
∂f

∂z

∂z

∂x
= 0

If fz 6= 0, we solve ∂z/∂x and obtain

∂z

∂x
= −fx

fz

The formula for ∂z/∂y is obtain in a similar manner

∂z

∂y
= −fy

fz

Theorem 14 Implicit Function Theorem Let F : D ⊂ Rn → R be of class C1 and let
a = (a1, ..., an) be contained in the level set

S := {x ∈ D|F (x) = c}

for some c ∈ R. If Fxn(a) 6= 0, then there exists a neighborhood U of (a1, ..., an−1) in
Rn−1 and a neighborhood V of an in R and a function f : U → V of class C1 such that if
(x1, ..., xn−1) ∈ U and xn ∈ V satisfy F (x1, ..., xn−1, xn) = c then xn = f(x1, ..., xn−1). The
function f is then called implicit function. It holds that

∂f

∂xk
= −

∂F
∂xk
∂F
xn

for k = 1, ..., n− 1.

Direction derivatives

Definition 48 Let u = (u1, ..., un) ∈ Rn be unit vectors and f : D ⊂ Rn → R with x =
(x1, ..., xn) 7→ f(x) then

Duf(x) = lim
t→0

f(x+ tu)− f(x)

t

direction derivatives of f in the direction of u at x

Theorem 15 Suppose f is differentiable then

Duf(x) =
∂f

∂x1
u1 + · · ·+ ∂f

xn
un = ∇f(x)u

Remarks:

• Duf(x) is the increase of f in the direction of u
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• The existence of the direction derivatives in all direction u does not imply differentia-
bility

Theorem 16 Duf(x) is maximal for

u =
1

‖∇f(x)‖
∇f(x)

Note: Duf(x) is maximal when is equal ‖∇f(x)‖ and it occurs when u has the same direction
as the gradient vector ∇f(x)

Theorem 17 f : D ⊂ Rn → R differentiable, c ∈ R and

S = {(x1, ..., xn) ∈ D|f(x1, ..., xn) = c}

Let a ∈ S. Then ∇f(a) is perperdicular to S at a

Remark: The gradient vector at a point P , ∇f(x0, y0, z0), is perpendicular to the tangent
vector r′(t0) to any curve C on S that passes through P .

Maximum and Minimum values

Definition 49 A point a ∈ D of a C1 function f : D ⊂ Rn → R is called critical point if
∇f(a) = 0

Theorem 18 Suppose f : D ⊂ R2 → R is of class C2 and has a critical point (a, b) ∈ D.
Let d = detHessf(a, b) where

Hessf(a, b) =

(
fxx(a, b) fxy(a, b)
fyx(a, b) fyy(a, b)

)
Which is called the Hessian matrix of f at (a, b), then the determinent d = fxx(a, b)fyy(a, b)−
(fxy(a, b)

2:

• If d > 0 and fxx(a, b) > 0, then f has local minimum at (a, b)

• if d > 0 and fxx(a, b) < 0, then f has local maximum at (a, b)

• if d < 0 then f has a saddle at (a, b) where a saddle is a critical point and at which each
negb. contains points (x, y) with f(x, y) < f(a, b) and points (x, y) with f(x, y) > f(a, b)

Theorem 19 Extreme Value Theorem If f is continuous on a closed, bounded set D ∈ R2,
then f attains an absolute maximum value f(x1, y1) and an absolute minimum value f(x2, y2)
at some points (x1, y1) and (x2, y2) in D

Theorem 20 Lagrange multiplier Let D ⊂ Rn and f, g : D → R of class C1 and let
S = {x ∈ D|g(x) = c}. Then if f|S (restriction of f to S) has an extrimum at a ∈ S where
∇g(a) 6= 0, then

∃λ ∈ R s.t ∇f(a) = λ∇g(a)

Theorem 21 f, g, h : D ⊂ Rn → R of class C1. Let S = {x ∈ D|g(x) = c and h(x) = d}.
Then if f|S has an extrimum at a ∈ S then

∃λ, µ ∈ R s.t ∇f(a) = λ∇g(a) + µ∇h(a)
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Multiple Integration

Double integral

Definition 50 Double Integral The double integral of f over the rectangle R is∫∫
R

f(x, y) dA = lim
m,n→∞

m∑
i=1

n∑
j=1

f(x∗ij , y
∗
ij)∆A

If this limit exists

Note: the double integral is the volume of the solid that lies above the rectangle R and below
the surface z = f(x, y)

Theorem 22 Fubini’s theorem if f is continuous on the rectangle

R = { (x, y) | a ≤ x ≤ b, c ≤ y ≤ d }

Then ∫∫
R

f(x, y) dA =

∫ b

a

∫ d

c
f(x, y) dy dx =

∫ d

c

∫ b

a
f(x, y) dx dy

More generally, this is true if we assume that f is bounded on R, f is discontinuous only on
a finite number of smooth curves, and the iterated integrals exists

General Regions

Consider a general region D. Suppose that D is a bounded region, which means that D can
be enclosed in a rectangular region R. In order to integrate a function f over D we define a
new function F with domain R by

F (x, y) =

{
f(x, y) if (x, y) ∈ D
0 if (x, y) 6∈ D

Then if F is integrable over R, then we define the double integral of f over D by∫∫
D

f(x, y) dA =

∫∫
R

F (x, y) dA

There exists three type of plane region D:

• A plane region D is said to be of Type 1 if it lies between the graphs of two continuous
functions of x, that is

D = { (x, y) | a ≤ x ≤ b, g1(x) ≤ y ≤ g2(x) }

where g1 and g2 are continuous on [a, b]

• A plane region D is said to be of Type 2 if it lies between the graphs of two continuous
functions of y, that is

D = { (x, y) | c ≤ y ≤ d, h1(y) ≤ x ≤ h2(y) }

where g1 and g2 are continuous on [c, d]
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• A plane region D is said to be of Type 3 if it is both of type 1 and type 2

Remarks: For a type 1 region, the functions must be continuous but they do not need to be
defined by a single formula

Definition 51 Type 1 if f is continuous on a type 1 region D then,∫∫
D

f(x, y) dA =

∫ b

a

∫ g2(x)

g1(x)
f(x, y) dy dx

Definition 52 Type 2 if f is continuous on a type 2 region D then,∫∫
D

f(x, y) dA =

∫ d

c

∫ h2(y)

h1(y)
f(x, y) dx dy

Polar Coordinates

The polar coordinates (r, θ) of a point are related to the rectangular coordinates (x, y) of a
point by the equations

r2 = x2 + y2 x = r cos(θ) y = r sin(θ)

Definition 53 If f is continuous on a polar rectangle R given by 0 ≤ a ≤ r ≤ b, α ≤ θ ≤ β,
where 0 ≤ β − α ≤ 2π, then∫∫

R

f(x, y) dA =

∫ β

α

∫ b

a
f(r cos(θ), r sin(θ))r dr dθ

Triple integrals

Just as we defined single integrals for functions of one variables and double integrals for
functions of two variables, so we can define triple integrals for functions of three variables

Definition 54 Triple Integral The double integral of f over the box B is

∫∫
B

f(x, y, z) dV = lim
l,m,n→∞

l∑
i=1

m∑
j=1

n∑
k=1

f(x∗ijk, y
∗
ijk, z

∗
ijk)∆V

If this limit exists

Note: The triple integrals can represent volume of 3 dimensional object. But we have already
the double integral for the volume. So, why the triple integral?
First note that if f(x, y, z) = 1 then the triple integral in a given surface is indeed the volume
of such surface. Then, it easier then the double because we do not have a function.
The most important feature of the triple integral is that its represent the total mass of the
given surface. Indeed, the function f(x, y, z) represent the density at each midpoint of the
little boxes.
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Theorem 23 Fubini’s theorem If f is continuous on the rectangular box B = [a, b]×[c, d]×
[r, s], then ∫∫∫

B

f(x, y, z) dV =

∫ s

r

∫ d

c

∫ b

a
f(x, y, z) dx dy dz

Remark: Like for the double integral, also the triple integral can be solved in an arbitrary
order.

General Regions

Now we define the triple integral over a general bounded region E in three-dimensional space
(solid) as we did for the double integral. Therefore, we enclose E in a box B such that F
agrees with f on E but is 0 for points in B that are outside E. By definition,∫∫∫

E

f(x, y, z) dV =

∫∫∫
B

F (x, y, z) dV

As for the double integral, there exist four types:

1. Type 1 if it lies between graphs of two continuous functions of x, y∫∫∫
E

f(x, y, z) dV =

∫∫
D

∫ u2(x,y)

u1(x,y)
f(x, y, z) dz dA

2. Type 2 if it lies between graphs of two continuous functions of z, y∫∫∫
E

f(x, y, z) dV =

∫∫
D

∫ u2(y,z)

u1(y,z)
f(x, y, z) dx dA

3. type 3 if the projection lies on the xz-plane∫∫∫
E

f(x, y, z) dV =

∫∫
D

∫ u2(x,z)

u1(x,z)
f(x, y, z) dy dA

4. Type 4 if its all of them

Cylindrical Coordinates

In the cylindrical coordinates system, a point P in the three-dimensional space is represented
by the ordered triple (r, θ, z), where r and θ are polar coordinates of the projection of P onto
the xy−plane and z is the directed distances from the xy−plane to P .
The formula are the same as the polar coordinates, the only difference is the z = z. Then the
triple integral is given by∫∫∫

D

f(x, y, z) dV =

∫∫∫
f(r cos(θ), r sin(θ), z)r dr dθ dz
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Spherical Coordinates

The spherical coordinates of a point P are: (ρ, θ, φ), where ρ = |OP | is the distance from the
origin to P , θ is the same angle as in cylindrical coordinates, and φ is the angle between the
positive z-axis and the line segment OP . Note that ρ ≥ 0 and 0 ≤ φ ≤ π.

The spherical coordinates are useful in problems where there is symmetry about a point,
and the origin is placed at this point.

Here follow the conversion equations

x = ρ sin(φ) cos(θ) y = ρ sin(φ) sin(θ) z = ρ cos(φ)

Consequently, we have arrived at the formula for the triple integration in spherical coordinates∫∫∫
E

f(x, y, z) dV =

∫ d

c

∫ β

α

∫ b

a
f(ρ sin(φ) cos(θ), ρ sin(φ) sin(θ), ρ cos(φ))ρ2 sin(φ) dρ dθ dφ

where E is a spherical wedge given by

E = {(ρ, θ, φ) | a ≤ ρ ≤ b, α ≤ θ ≤ β, c ≤ φ ≤ d }

Change of Variables

In one dimensional Calculus we define the following Substitution Rule∫ b

a
f(x) dx =

∫ d

c
f(g(u))g′(u) du

where x = g(u) and a = g(c), b = g(d)

Definition 55 Jacobian The Jacobian of the transformation T given byb x = g(u, v) and
y = h(u, v) is

∂(x, y)

∂(u, v)
=

∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

=
∂x

∂u

∂y

∂v
− ∂x

∂v

∂y

∂u

With this notation we can give an approximation of the area ∆A of R:

∆A ≈
∣∣∣∣∂(x, y)

∂(u, v)

∣∣∣∣∆u∆v

Theorem 24 Suppose that T is a C1 transformation whose jacobian is nonzero and that T
maps a region S in the uv-plane onto a region R in the xy-plane. Suppose that f is continuous
on R. Suppose that T is one to one. Then∫∫

R

f(x, y) dA =

∫∫
S

f(x(u, v), y(u, v))

∣∣∣∣∂(x, y)

∂(u, v)

∣∣∣∣ du dv
For the triple integral is close the same, where the Jacobian of T is

∂(x, y, z)

∂(u, v, w)
=

∂x
∂u

∂x
∂v

∂x
∂w

∂y
∂u

∂y
∂v

∂y
∂w

∂z
∂u

∂z
∂v

∂z
∂w

It follows that the previous theorem will be
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Theorem 25∫∫∫
R

f(x, y, z) dV =

∫∫∫
S

f(x(u, v, w), y(u, v, w), z(u, v, w))

∣∣∣∣ ∂(x, y, z)

∂(u, v, w)

∣∣∣∣ du dv dw
Vectors Calculus

Vector Fields

Definition 56 Vector Field Let D ⊂ Rn, a vector field on Rn is a function F that assigns
to each point (x, y) in D a n-dimensional vector F(x1, ..., xn)

The best way to picture a vector field is to draw the arrow representing the vector F(x, y)
starting at the point (x, y). Note that F can be written in the following way (i.e in n=2):

F(x, y) = 〈P (x, y), Q(x, y)〉 = P i +Qj

Definition 57 A vector field F : D ⊂ Rn → Rn is called gradient vector field or conser-
vative if there exists a function f : D → R with F = ∇f . In this case f is called potential
function for F

Line integrals

Let C be a smooth curve in Rn with parameters r : [a, b] → Rn and t 7→ r(t) with r′(t) 6= 0
f.a t ∈ [a, b]. Then length of C is

L =

∫ b

a
‖r′(t)‖ dt =

∫ L

0
ds

where s is the archlength

Definition 58 Line integral Let f : D ⊂ Rn → R continuous. Then the line integral of f
along C ⊂ D is defined as ∫

C

f ds =

∫ b

a
f(r(t))‖r′(t)‖ dt

Definition 59 Piecewise-smooth curve C is called piecewise smooth if C is a union of
finitely many smooth curves Ci for i = 1, ..., n with the initial point of Ci+1 is the terminal
point of Ci.
Then we define the integral of f along C as the sum of the integrals of f along each of the
smooth pieces of C: ∫

C
f(x, y) ds =

n∑
i=1

∫
Ci

f(x, y) ds

Theorem 26 Line integrals of scalar valued functions are independent of parametrization
(and in particular independent of the orientation1)

1direction of the arrow on the curve
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Definition 60 Let F : D ⊂ Rn → Rn be a continuous vectors fields and C be a smooth curve,
C ∈ D, with parametrization r : [a, b] → Rn. Then the line integral of F along C is defined
as ∫

C
F · dr =

∫ b

a
F(r(t)) · r′(t) dt =

∫
C

F ·T ds

Note: Assume F ∈ R3 is given by F = P i +Qj +Rk then∫
C

F · dr =

∫
C
P dx+Qdy +Rdz

Moreover, note that an interpretation of line integral is the required work for move a particle
along C

Theorem 27 F continuous vectors field on D ⊂ Rn where D contains a smooth curve C.
Let r : [a, b]→ Rn and h : [c, d]→ Rn be parametrizations of C. Then∫

C
F · dr =

{∫
C F · dh If r(a) = h(c)and r(b) = h(d)

−
∫
C F · dh If r(a) = h(d)and r(b) = h(c)

Note: the integral is the same if r and h gives the same orientiation, otherwise is the opposite.

Theorem 28 Let C be a smooth curve given by the vector function r(t), a ≤ t ≤ b. Let f be
a differentiable function such that F = ∇f . Suppose F is continuous. Then∫

C
F · dr = f(r(b))− f(r(a))

Definition 61 F : D ⊂ Rn → Rn continuous vector field is independent of path if∫
C

F · dr =

∫
H

F · dh

for all smooth curves C and H with the same initial and final points

Theorem 29 Line integrals of conservative vector fields are independent of path

Theorem 30
∫
C F · dr is independent of path in D if and only if

∫
C F · dr = 0 for every

closed path C in D

Definition 62 Connected D ⊂ Rn is called connected if any two points in D can be
connected by a curve that is contained in D

Theorem 31 Let D ⊂ Rn connected, F : D ⊂ Rn → Rn vector field. If F independent of
path then F is conservative, i.e there is f : D → R with F = ∇f

Remark: F is conservative on D ⊂ R2, F= P i + Qj = fxi + fyj where f is the potential
function

Definition 63 D ⊂ Rn is called simply connected if it is connected and all closed curves
in D can be contracted to a point in D without leaving D
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Theorem 32 If F continuous vector field and F independent of path, then is equivently to
say that ∮

C

F · dr = 0

for all closed curves C

Note: C is closed if initial and final point are the same.

Theorem 33 Let F = P i +Qj be a vector field on a symply connected domain D in R2 with
P and Q being C1. Then

∂P

∂y
=

∂Q

∂x
⇔ F is conservative

Green’s Theorem

A planas curve C is called simple if it has no selfintersection between the end points.

Theorem 34 Let D be a bounded domain in R2 whose boundaries ∂D consist of finitely
many, simple, closed, picewise C1 curves. If P and Q have continuous partial derivatives on
a open region that contains D, then∮

∂D

P dx +Qdy =

∫∫
D

(
∂Q

∂x
− ∂P

∂y

)
dA

Diverge and Curl

Definition 64 The Del operator, denoted ∇, is a vector differential operator

Note: R3 it is defined as

∇ = i
∂

∂x
+ j

∂

∂y
+ k

∂

∂z

Definition 65 The divergence of F, denote ∇ · F, is defined by

∇ · F =
∂F1

∂x1
+
∂F2

∂x2
+ · · ·+ ∂Fn

∂xn

Note: The value of the diverges can be interpreted as the rate of the net mass flow of F in
if its negative, out if its positive

Definition 66 the curl of F, denoted ∇× F is defined by

∇× F =

(
∂

∂x
,
∂

∂y
,
∂

∂z

)
× (P,Q,R)

=

(
∂R

∂y
− ∂Q

∂z

)
i +

(
∂P

∂z
− ∂R

∂x

)
j +

(
∂Q

∂x
− ∂P

∂y

)
k

Remark: The value of the curl measures the local rate of rotation of F at x

• The Direction of the curl is the orientation of the local rotation of F at x
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• the Magnitude of the curl is the rate of this local rotation

Theorem 35 If f is a scalar valued function of class C2, then

∇× (∇f) = 0

Theorem 36 If F is a vector field of class C2 on D ⊂ R3, then

∇ · (∇× F) = 0

Theorem 37 If F is a vector field in R3 whose component functions have continuous partial
derivatives and ∇× F = 0, then F is a conservative vector field

Theorem 38 For a C1 vector field F on D ⊂ R3 where D is simply connected, it holds that
F is conservative ⇔ curlF = 0

Note: We can rewrite the equation in the Green Theorem in the vector form∮
C

F · dr =

∮
C

F ·T ds =

∫∫
D

(curlF) · k dA

Which express the line integral of the tangential component of F along C as the double
integral of the vertical component of curlF over the region D enclose by C

Parametrized Surfaces in R3

Definition 67 A parametrized surface in R3 is a continuous map X : D → R3 that is
one-one on D, except possibly along ∂D

Definition 68 If D ⊂ R2 is a connected open set, possibly toghether with some of its boundary
points, then the graph of a continuous, scalr-valued function f : D → R may be parametrized
by X : D → R3; X(s, t) = (s, t, f(s, t))

Definition 69 If X(s, t) = (x(s, t), y(s, t), z(s, t)) is differentiable at s0, t0 ∈ D, then a tan-
gent vector Ts(s0, t0) to the s-coordinate curve X(s0, t) at (s0, t0) is:

Ts(s0, t0) =
∂X

∂s
(s0, t0) =

∂x

∂s
(s0, t0)i +

∂y

∂s
(s0, t0)j +

∂z

∂s
(s0, t0)k

Similarly, a tangent vector Tt(s0, t0) to the t-coordinate curve X(s, t0) at (s0, t0) is given by

Tt(s0, t0) =
∂X

∂t
(s0, t0) =

∂x

∂t
(s0, t0)i +

∂y

∂t
(s0, t0)j +

∂z

∂t
(s0, t0)k

Definition 70 S = X(D) is smooth at X(s0, t0) if X is of class C1 and Ts(s0, t0) ×
Tt(s0, t0) 6= 0

Definition 71 If S is smooth at every point X(s0, t0), then the nonzero vector

N(s0, t0) = Ts(s0, t0)× Tt(s0, t0)

Is called the standard normal vector
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Definition 72 A piecewise smooth parametrized surface is the union of images of finitely
many parametrized surfaces

Definition 73 Suppose S = X(D) is a smooth parametrized surface, then the surface area
of S is given by ∫∫

D

‖Ts × Tt‖ ds dt =

∫∫
D

‖N(s, t)‖ ds dt

Note: N(s, t) = Ts × Tt = ∂(y,z)
∂(s,t) i− ∂(x,z)

∂(s,t) j + ∂(x,y)
∂(s,t) k

Definition 74 If S is the graph of a class C1 function f(x, y) (i.e, S = X(D) where X(s, t) =
(s, t, f(s, t)), (s, t) ∈ D ). Then the surface area is given by

∫∫
D

√(
∂f

∂s

)2

+

(
∂f

∂t

)2

+ 1 ds dt

Theorem 39 Let X : D → R3 be a smooth parametrized surface, where D ⊂ R2 is a bounded
region; and let f : X ⊂ R3 → R be a continuous function, with X containing S = X(D).
Then the scalar surface integral of f along X is∫∫

X

f dS =

∫∫
D

f(X(s, t))‖Ts × Tt‖ ds dt

=

∫∫
D

f(X(s, t))‖N(s, t)‖ ds dt

Theorem 40 Let X : D → R3 be a smooth parametrized surface, where D ⊂ R2 is a bounded
region and let F : X ⊂ R3 → R3 be a continuous vector field, with X containing S = X(D)
then the vector surface integral of F along X is given by∫∫

X

F · dS =

∫∫
D

F(X(s, t)) ·N(s, t) ds dt

Definition 75 If X : D → R3 is a smooth parametrized surface then we can define

n(s, t) =
N(s, t)

‖N(s, t)‖

called the unit normal vector to S = X(D)

Note: ∫∫
X

F · dS =

∫∫
X

(F · n) dS

Significance: The vector surface integral represents the flux of F across S = X(D). That
is, if F represents the velocity field of a fluid in R3, the flux is the rate of fluid transported
across S per unit time
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Theorem 41 Scalar surface integrals do not depend on the parametrization

Definition 76 A smooth, connected surface S is orientable if a single unit normal vector
can be defined at each point so that the collection of these vectors varies continuously over S
If S is orientable, then it has two orientations

Theorem 42 Vector surface integrals depend only on whether the reparametization is orientation-
preserving. That is, if Y is a smooth reparametrization of X then

∫∫
Y

F · dS =


∫∫
X

F · dS if Y is orientation-preserving

−
∫∫
X

F · dS if Y is orientation-reversing

Theorem 43 Stokes’s Theorem Suppose that S is a bounded, piecewise smooth, oriented
surface in R3 , oriented by unit normal n at each point; and that ∂S consists of finitely
many picewise C1 simple closed curves, and that F is a vector field of class C1 whose domain
includes S, then ∫∫

S

∇× F · dS =

∮
∂S

F · ds

Theorem 44 Gauss’ Divergence theorem Suppose:

• D is a bounded solid region R3

• ∂D consists of finitely many picewise smooth, closed, orientable surfaces, each oriented
by unit normals that point away from D

• F is a vector field of class C1 whose domain includes D

then ∫∫∫
D
∇ · F dV =

∫∫
∂D

F · dS
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